Identification of genes required for chronic persistence of Brucella abortus in mice.

نویسندگان

  • P C Hong
  • R M Tsolis
  • T A Ficht
چکیده

The genetic basis for chronic persistence of Brucella abortus in lymphoid organs of mice, cows, and humans is currently unknown. We identified B. abortus genes involved in chronic infection, by assessing the ability of 178 signature-tagged mutants to establish and maintain persistent infection in mice. Each mutant was screened for its ability to colonize the spleens of mice at 2 and 8 weeks after inoculation. Comparison of the results from both time points identified two groups of mutants attenuated for chronic infection in mice. The first group was not recovered at either 2 or 8 weeks postinfection and was therefore defective in establishing infection. Mutants in this group carried transposon insertions in genes involved in lipopolysaccharide biosynthesis (wbkA), in aromatic amino acid biosynthesis, and in type IV secretion (virB1 and virB10). The second group, which was recovered at wild-type levels 2 weeks postinfection but not 8 weeks postinfection was able to establish infection but was unable to maintain chronic infection. One mutant in this group carried a transposon insertion in a gene with homology to gcvB of Mycobacterium tuberculosis, encoding glycine dehydrogenase, an enzyme whose activity is increased during the state of nonreplicating persistence. These results suggest that some mechanisms for long-term persistence may be shared among chronic intracellular pathogens. Furthermore, identification of two groups of genes, those required for initiating infection and those required only for long-term persistence, suggests that B. abortus uses distinct sets of virulence determinants to establish and maintain chronic infection in mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brucella abortus virB12 is expressed during infection but is not an essential component of the type IV secretion system.

The Brucella abortus virB operon, consisting of 11 genes, virB1 to virB11, and two putative genes, orf12 (virB12) and orf13, encodes a type IV secretion system (T4SS) that is required for intracellular replication and persistent infection in the mouse model. This study was undertaken to determine whether orf12 (virB12) encodes an essential part of the T4SS apparatus. The virB12 gene was found t...

متن کامل

The Assessment of Cytokine and Antibody Responses to Recombinant 31kDa Brucella Cell-Surface Protein in Brucella Abortus Infected Mouse Model

Background & Objective: One of the most common diseases between zoonosis - especially in developing countries – is brucellosis. Identification of Brucella cell antigen combinations in terms of the amount and type of immune response in infected hosts, are important in vaccine design. 31kDa Brucella cell surface protein (BCSP31) is shared among all Brucellae. We aimed to define specific immune r...

متن کامل

Development of New Modified Simple Polymerase Chain Reaction and Real-time Polymerase Chain Reaction for the Identification of Iranian Brucella abortus Strains

Brucellosis is primarily a worldwide zoonotic disease caused by Brucella species. The genus Brucella contains highly infectious species that are classified as biological threat agents. In this regard, the identification of Brucella can be a time-consuming and labor-intensive process posing a real risk of laboratory-acquired infection to the laboratory staff. This stud...

متن کامل

Mice lacking components of adaptive immunity show increased Brucella abortus virB mutant colonization.

The Brucella abortus type IV secretion system (T4SS), encoded by the virB genes, is essential for survival in mononuclear phagocytes in vitro. In the mouse model, a B. abortus virB mutant was initially able to colonize the spleen at the level of the wild type for approximately 3 to 5 days, which coincided with the development of adaptive immunity. To investigate the relationship between surviva...

متن کامل

New Brucella abortus S19 Mutant to Improve Distinction Between Infected and Vaccinated Animals

Background: Using Brucella abortus Strain 19 (S19) to control bovine brucellosis is restricted due to induce antibodies to the O-side chain of the smooth lipopolysaccharide (LPS) which may be difficult to differentiate vaccinated and infected animals. Furthermore, it is virulent for humans and can induce abortion to cattle. Objectives: The aim of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 68 7  شماره 

صفحات  -

تاریخ انتشار 2000